Name

www.PapaCambridge.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

PHYSICAL SCIENCE

0652/03

Paper 3

May/June 2003

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 16.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Exami	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

Fig. 1.1 shows the trends in some of the properties of the elements in Group Periodic Table.

1.1 shows the tren dic Table.		2 properties of the	elements in Grou	For Examiner's Use
nitrogen	non-metal	acidic oxide	gas at 20°C	36°C
phosphorus				OH
arsenic				
antimony]	 		
bismuth	metal	basic oxide	solid at 20°C	

Fig. 1.1

(a)	(i)	Describe the structure and bonding in nitrogen.
	(ii)	Explain how this structure relates to the properties shown above.
		[3]
(b)	Sug	gest, with a reason, the type of oxide you would expect arsenic to form.
		[2]
(c)		mony is a metallic element. Suggest why you would expect antimony to have a ser melting point than bismuth.
		[2]
(d)	Writ	e down the formula that you would expect for a chloride of phosphorus.
		[1]

For Examiner's

2 A child throws a beach ball, of mass 0.075 kg, vertically upwards from the ground. takes 0.3 s to accelerate from rest to 11 m/s.

lane	akes 0.5 \$ to accelerate from rest to 11 m/s.		
(a)		culate the acceleration of the ball. Write down the equation that you use and show our working.	
		acceleration =[3]	
(b)		culate the maximum kinetic energy of the ball. Write down the equation that you use show all your working.	
		maximum kinetic energy = [3]	
(c)	pote	ball reaches a vertical height of 2.7 m. Calculate the maximum gravitational ential energy of the ball. Write down the equation that you use and show all your king. [$g = 10 \text{ N/kg}$]	
(d)	(i)	maximum gravitational potential energy =	
		[2]	
	(ii)	Discuss whether or not the energy conversion from kinetic to gravitational potential has been done efficiently.	

3 Many substances need to be kept under carefully controlled conditions. Use your known of the reactions of the substances involved to explain each of the following.

	y substances need to be kept under carefully controlled conditions. Use your known e reactions of the substances involved to explain each of the following. Silver nitrate is stored in dark brown bottles.
	ny substances need to be kept under carefully controlled conditions. Use your known e reactions of the substances involved to explain each of the following.
(a)	Silver nitrate is stored in dark brown bottles.
	[2]
(b)	Sodium metal is stored immersed in liquid paraffin.
	[2]
(c)	Anhydrous copper(II) sulphate is stored in a desiccator.
	[2]
(d)	
	[2]

[3]

- An object of height 2.0 cm is placed 3.0 cm to the left of a converging (convex) lens 4 length 5.0 cm.
 - (a) On the grid below draw a ray diagram to show the formation of the image by the lens. The central line shows the centre of the lens.

(b)	Write down three properties of the image.
	[3]
(c)	Suggest a use for a lens forming an image in this way.
	[1]

5 The two diagrams in Fig. 5.1 represent the structures of a pure metal and one of its a

Fig. 5.1

(a)	Stat	te what holds the positive metal ions together.
		[1]
(b)	Ву	referring to the diagrams, explain why pure metals are more malleable than alloys.
		[4]
(c)		n the metals in the alloy belong to Group II in the Periodic Table. The smaller circles resent magnesium ions.
	(i)	Suggest what ions the larger circles represent [1]
	(ii)	Describe two changes that you would expect to observe if a sample of the pure metal were placed in cold water.
		[2]

6 Fig. 6.1 shows a coil of copper wire wound on a cardboard tube. The ends of the connected to a cathode ray oscilloscope (c.r.o.) and a magnet is released so that it vertically down the tube.

Fig. 6.2 shows the trace seen on the c.r.o., along with its y-gain and time-base settings.

voltage (y-gain): 0.2V/division time-base: 20ms/division

Fig. 6.1

Fig. 6.2

(a) Write down the voltages at A and B.

voltage at **A** =V

voltage at **B** =V [2]

(b) Explain why these voltages are produced.

 •••••
[2]

(c)	State and explain two things about the shape of the trace.	Use
		Mbridge.c
		Se. COM
		13
		1
	[4]	

		the transfer of the transfer o
		9
		ation for the reaction between copper(II) carbonate and dilute hydrochloric at an as shown below. $CuCO_3(s) + 2HCl(aq) \rightarrow CuCl_2(aq) + H_2O(I) + CO_2(g)$ What do you understand by the symbol (II) after the word copper?
		$CuCO_3(s) + 2HCl(aq) \to CuCl_2(aq) + H_2O(I) + CO_2(g)$
(a)	(i)	What do you understand by the symbol (II) after the word copper?
		[1
	(ii)	Why is it not necessary to write this symbol after calcium in the name calcium carbonate?
		[1
(b)		an experiment copper(II) carbonate is added to 50 cm ³ of hydrochloric acid ocentration 1 mol/dm ³ , until no more will react.
	(i)	Calculate the number of moles of HCl in the $50 \mathrm{cm}^3$ of acid.
	(ii)	number of moles of HCl
		number of moles of copper(II) carbonate[1
	(iii)	Calculate the relative formula mass, M_r , of copper(II) carbonate. [A _r : C, 12; O, 16; Cu, 64]
		M _r of copper(II) carbonate[2
	(iv)	Calculate the mass of copper(II) carbonate that will react with this acid.
		mass of copper(II) carbonate[2

For Examiner's Use

8 Fig. 8.1 shows a circuit with a high-resistance voltmeter being used to measure the a cell.

Fig. 8.1

(a)	Explain the meaning of the term <i>e.m.f.</i>
	[2]
(b)	Explain why the voltmeter must have a high resistance if it is to measure an accurate value of the e.m.f.
	[2]
(c)	Fig. 8.2 shows a cell with an internal resistance of 2 Ω .

A voltmeter which has a resistance of 100 Ω is connected across the cell. The e.m.f. of the cell is 1.50 V.

Fig. 8.2

www.PapaCambridge.com Calculate the current in the circuit. current =[3] Calculate the potential difference across the voltmeter. potential difference = [2] (iii) The potential difference in (ii) is not equal to the e.m.f. of the cell. Explain why this is the case and state what change you would make in order to give a value much closer to the e.m.f. of the cell.

[2]

- Ethene, $\mathrm{C_2H_4}$, is the first member of the homologous series of alkenes. 9
- www.PapaCambridge.com (a) Draw a diagram to show the arrangement of the outer shell electrons in a molecule ethene.

(b)		nost homologous series the first member contains only one carbon atom. lain why this is not the case with alkenes.
		[2]
<i>(</i> - <i>)</i>		
(c)	Ethe	ene and hydrogen can be produced from saturated hydrocarbons by cracking.
	(i)	Write an equation for the cracking of butane, $\mathrm{C_4H_{10}}$, to produce ethene and hydrogen.
		[2]
	(ii)	State two essential conditions for cracking to occur.
		[2]

13

BLANK PAGE

WWW. Papa Cambridge.com

14

BLANK PAGE

www.PapaCambridge.com

15

BLANK PAGE

www.PapaCambridge.com

	Elements
DATA SHEET	The Periodic Table of the

7 9 Li Be Lithium 4 Beylium 23 24 NG MG Magnesium 24 10 Mg Magnesium 25 10 Mg Mg Magnesium 25 10 Mg Mg Magnesium 25 10 Mg							<u></u>									
4 +										≡	≥	>	>		0	
4 +					1 Hydrogen										4 Helium 2	
7										111 Boron	12 Carbon 6	14 X Nitrogen 7	16 Oxygen 8	19 Fluorine	20 Ne on 10	
71	I									27 A1 Aluminium 13	28 Sili con 14	31 D Phosphorus 15	32 Sulphur 16	35.5 C1 Chlorine	40 Ar Argon	T
39 40 Ca Calcium Calcium 20	45 48 48 Sc Titanium 21 22	51 in Vanadium 23	Chromium	Mn Manganese 25	56 Fe Iron	59 Co Cobalt	59 Nickel	64 Copper	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	75 AS Arsenic	79 Selenium 34	80 Br Bromine 35	84 Kr Krypton 36	1
Rb Srontium Strontium	89 91 Y Zr Yttıum Xiroonium 39	r 93 r Nb nium Niobium	96 Molybdenum 42	Tc Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	119 Sn Tin	Sb Antimony 51	128 Te Tellurium	127 I lodine 53	131 Xe Xenon 54	16
133 137 Cs Ba Caesium 56	Lanthanum Hafnium 57 * 72	181 Ta ium Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir Iridium 77	195 Pt Platinum 78	197 Au Gold	201 Hg Mercury	204 T1 Thallium 81	207 Pb Lead 82	209 Bis Bismuth	Po Polonium 84	At Astatine 85	Radon 86	
226 Fr Ra Francium 88	227 Ac Actinium 89															1
8-71 Lanthanoid series 30-103 Actinoid series	d series series	140 Ce Cerium 58	Pr Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	173 Yb Ytterbium 70	175 Lu Lutetium 71	
3y X X X x b = b = b = b = b = b = b = b = b = b	 a = relative atomic mass X = atomic symbol b = proton (atomic) number 		Pa Protactinium 91	238 U Uranium	Neptunium 93		Am Americium 95	Cm Curium	BK Berkelium 97	Californium 98	Es Einsteinium 99	Fm Fermium 100	Mendelevium 101	Nobelium 102	Law	N. A.
		The		one mole	of any ga	s is 24 dr	ก ³ at roon	n tempera	ature and	pressure	(r.t.p.).			a Cambridge co.	aCamb.	

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).